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) _Behavioral graphs

O Web graphs Research trends

O Host graphs O Empirical analysis:

o Collaboration networks real-world graphs

o Sensor hetworks O Modeling: ﬁnding.good
. . models for behavioral

O Biological networks graphs

O .

There has been a
tendency to lump
together behavioral

. ' ial raphs arising from a
flickr (D) graphs arising

variety of contexts
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) | Social networks

Social network: Graph that represents
Friends: {0 309: 45andashovel, 99catsaway, __floozy
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| Studying behavioral graphs

More and more of all interactions are happening online

O The resulting data is a goldmine for studies
Massive amounts, even hundreds of millions of nodes
Search companies are now working on crawls of 100+ billion pages
Facebook has over 600M active users

Study phenomena at different scales (eg, interaction of people in
focused groups of different sizes, overall structure of the network)

Ability to measure, record, and track individual activities at the
finest resolution (eg, user befriending another, user buying a dvd,
user tagging a photo, user tweeting — when, how, why)

Interplay between monadic and dyadic attributes
O A double-edged sword

Data is inherently noisy

Large scale of data leads to algorithmic challenges

O Graph-theoretic analysis has led to significant impact
Link analysis in web search
Sophisticated recommendation systems
O Interplay of measurements, modeling, and algorithms
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) | Properties of behavioral graphs

O Degree distributions
Heavy tail

O Clustering
High clustering coefficient

O Communities and dense subgraphs

Abundance; locally dense, globally sparse; spectrum
O Connected components

Distribution; “bow-tie” structure

O Connectivity

Low diameter; small-world properties
Analyze these

© Compressibility properties over time
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), _Questions we study

Behavioral networks evolve with additions and deletions of
nodes and edges
O How to model network growth?
Simple and few parameters
Consistent with observed phenomena and measurements
Capture reality as best as possible
Mathematically tractable
O How does network evolve over time?
Arrivals of nodes and edges
Change in the graph structure
Evolution in terms of (graph) properties
Understand the individual processes behind the evolution
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) _The G, model

O A random graph model with parameter p D o

Connect each pair of nodes with probability p (@)
model, studied almost half-century ago

If p is O(c/n), then the graph is sparse

O Many properties are well understood
Threshold phenomenon: eg, giant component, connectivity
Global properties such as diameter, eigen-values, coloring
Probability that a node has degree k is Poisson

P(k) = exp(-A) A¥ / k!

O Evolving version: A new node picks an existing node
uniformly at random to add an edge

Mar 28, 2011 TWAW
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102 10°
Final degree, K

O Probability that a node has

indegree k, P(k) = 1/kP
B is the power-law exponent

O Appears straight-line on a log-

log plot

O One of the earliest empirical

observations about web and
social networks

O Hence, G, is not an

appropriate model for social
networks
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) | Preferential attachment model

O Observation: Rich-get-richer

Popular documents get more citations
Popular people get more friends

O Each step has one new incoming node along with an edge

O Probability it links to another node is proportional to how
popular is the latter, ie, its degree

Pr[new node links to nodei]=d;/ } d.
Theorem. In this model, power-law exponent = 3
Intuitive proof. ad. / ot = d. / (2t)
If node i was added at time t,, then d.(t) = (t/t,)°>
Pr[d.(t) > k] = Pr[t, < t/k?] = 1/k?
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) | Communities

Edges usually imply Cricket
endorsement or interestina Ajice

topic or a person
Users link to pages they care about Tennis
Friendship links in social network
P sBob

Two users with similar interests
need not know each other Soccer

Communities are dense
subgraphs or dense
bipartite subgraphs

Web and social networks are abundant
In communities

Mar 28, 2011 TWAW 10



), _Copying model

2000

O Observation: People copy their friend’s webpage
when creating a new one or copy their friend’s
contacts when joining a social network

O When a new node arrives, it copies edges from a
pre-existing node with probability 1 - o
links to the destination of the edge
O The degree distribution is a power-law with
exponent (2 - a)/(1 - )
O Can explain communities: The number of dense
bipartite cliques in this model is large

Mar 28, 2011 TWAW 11
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| Flickr: Density, diameter over time

Shrinking diameters and
densification in citation graphs:

0 10 20 30 40 50 60 70

Density
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) | Forest-fire model

2005

Observation: Copying happens beyond one step

When a new node arrives, it
O copies an edge from a pre-existing node with prob. 1 - o

O copies an edge from the destination of the edge
O ...

An iterated version of the copying model

In addition to the above, leads to densification and shrinking
diameters, in empirical simulations

Mar 28, 2011 TWAW
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) | Affiliation networks model

O Bipartite graph B(Q, U, D) and a graph G(Q, E)
Q = papers, U = topics

O Co-evolution of Band G
Q side of B evolves by copying
U side of B evolves by copying

Q side of G evolves by prototyping (via evolution of Q
and U in B)

O This evolutionary model produces graphs with
densification and shrinking diameters

Mar 28, 2011 TWAW
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), _Dynamic analysis via snapshots

O Evolution of web pages and content
2004
2004
2009

O Social network evolution
2006

O Citation graphs, autonomous systems

2005
2005
Densification and shrinking diameters

O Process dynamics
2006
2006
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Components: A grand canyon view

Elickr
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| Dynamics of the components

O How do components consolidate?

1 2 3-4 59 10-19 20-449 450+ —————— ==

l 205.1

2 55.9 0.8

3-4 64.2 0.5 0.3

5-9 70.8 0.4 0.3 0.2

10-19 43.9 0.2 0.1 0.1 0.09

20-449 2.6 0.1 0.01 0.07 0.04 0.03

450+ 315.3 11.5 7.1 5.0 2.4 1.0 0

Singletons merge with non-GC and GC

Non-GCs merge with GC
Almost never a non-GC merges with another non-GC

O Why is singleton attracted to a non-GC?
Is there a special attractor in a non-GC?

Mar 28, 2011 TWAW 17



| Structure of non-GC: Stars

O Informal definition of star twinkl

There are one or more

centers (high degree nodes) cente

There are many degree-one
nodes (twinkles) connected
to these centers

O Under reasonable setting of parameters, more than
93% of non-GCs are stars

O The stars form quickly
O A large fraction of them are yet to be absorbed into GC

Mar 28, 2011 TWAW 18



) | Structure of GC: Core

O There is a small core of very
high connectivity inside GC

O The core is not comprised of
star centers

O GC connectivity does not
depend on star centers

Core Whiskers

This has implications for finding
dense communities:
2008

Mar 28, 2011 TWAW 19



_A simple model with user types

At each time step

A person joins the network and is chosen to be one of
three types: passive user, inviter, linker

Few friendships (ie, edges) arrive

o Source of edge chosen from inviters/linkers with degree-
biased probabilities (ie, preferential attachment)

o If source = inviter, destination = a new passive user
o If source = linker, destination chosen from linkers and
inviters, degree-biased
Empirically, this model generates the observed
temporal characteristics (fraction of components,
stars, core)

Open question. Can we say anything formal?

Mar 28, 2011 TWAW 20



), | A microscopic look at evolution

O We are starting to have more nuanced models

Processes such as preferential attachment are assume
without actually being observed

There are many ways to generate power-law degrees
O What is the best way to compare two graph

models?
Maximume-likelihood (standard tool in ML)
Efficiency issues: 2006

O We have edge-by-edge arrival information, so can
take an edge and compare the likelihood of its
existence in competing models

Mar 28, 2011 TWAW 21



) . How does the network evolve?

Three processes govern the evolution
Node arrival process. Nodes enter the network

Edge initiation process. Each node decides when to
initiate an edge

Edge destination process. Determines destination
after a node decides to initiate

We will present a complete model of network
evolution by mining the node and edge creation
data

Mar 28, 2011 TWAW
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) | Node arrivals: Rate

It really depends on the network, ranging
from sub-linear to exponential

10° |

101 [ oo | | | |
0 5 10 15 20 25

Time (months)
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) | Node arrivals: Lifetime

Lifetime a: time between node’s first and last edge
10°

107"
-2
5 10% ¢

Q 10-3 '

10

107 ol
0 100 200 300 400 500 600

Node lifetime (days), a

Node lifetime is exponentially distributed:
p,(a) = A exp(-Aa)

Mar 28, 2011 TWAW 24



| How are edges initiated?

Edge gap 8(d): time between dt" and d+1°t edge

0

10
Competing models:

exponential, lognormal,
stretched exponential,
power-law with
exponential cutoff

—
ol

—h
<
no

—r
ol
W

|
E=N

Gap probability, p(8(1))
=)

Gap, o(1)

Edge interarrivals follow power-law with exponential
cutoff: p,(5(d); a(d), B(d)) = d(d) < exp(-B(d) 5(d))
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Gap parameter 3
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| How do a and B change with degree?

20

40 60
Current degree, d

This means nodes of higher degree start

adding edges faster and faster

Mar 28, 2011

TWAW

80

100

26



| What we know so far

Process

1) Node arrival

2) Edge initiation

3) Edge destination

Mar 28, 2011

Model

e Node arrival is network dependent
e Node lifetime: p,(a) = A exp(-Aa)

e Edge gaps: p,(0) « 6™ exp(-pd 0)

TWAW 27



), | Does preferential attachment happen?

We unroll the true network edge arrivals and
measure node degrees where edges attach

107
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), _How local are the added edges?

Just before edge (u,v) is placed, how far are u and v?
Normalize this by number of nodes at that hop distance

102 — , | , | — Real edges are local and
= ot [ most of them (66%) are
o’ : triangle closing
- !

2 .5
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e
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2 0°r @
S L7 ‘ O
- 10" ‘
L
10-8 I I I I I I
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Hops, h (1858-1918),

2007
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), IClosing triangles

O New triangle-closing edge (u,w) appears next

O We model this as O @ @ O

Choose u’s neighbor v
Choose V’'s neighbor w O @ @ O
Add edge (u,w) O O

O 25 strategies for choosing v and then w

Random, degree preferentially, number of common
friends, time of last activity, combination

O Can compute likelihood of each strategy
Under random-random: p(u,w) = 1/5*1/2+1/5*1/4

Mar 28, 2011 TWAW 30



| Triangle closing strategies

Log-likelihood improvement over the baseline

Strategy to select v (1%t node)

Strategies to pick a neighbor
random: uniformly at random
deg: proportional to its degree

com: prop. to the number of common friends
last: prop. to time since last activity

comlast: prop. to com*last

Mar 28, 2011
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<  FLICKR random deg”? com last=* comlast="“
8 " random 13.6 139 143 16.1 15.7
T deg¥! 13.5 142 13.7 16.0 15.6
3 last?? 14.7 156  15.0 17.2 16.9
5 com 11.2 11.6 119 13.9 13.4
g comlast’-! 11.0 114 117 136 13.2

Random-random
works quite well
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| What we know so far

Process

1) Node arrival

2) Edge initiation

3) Edge destination

Mar 28, 2011

Model

e Node arrival is network dependent
e Node lifetime: p(a) = A exp(-Aa)

e Edge gaps: p(d) x 0 exp(-fd 0)

¢ First edge chosen preferentially

e Use random-random strategy to
close triangles

TWAW 32



) | Semi-simulation: Closer to truth

Take the network at T/2 and evolve it using
preferential attachment (PA) and random-random
(RR) for edge addition events

0
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), | The complete network model

O Nodes arrive using the arrival rate

O Node u arrives
It has lifetime a ~ A exp(-Aa)

Adds first edge to node v with probability proportional to
degree of v

O A node u with degree d has gap 0 ~ * exp(-fd 9d)
and goes to sleep for d time steps

O When u wakes up, if its lifetime still valid, creates a
random-random triangle-closing edge

Mar 28, 2011 TWAW 34



), _An analysis

Theorem. The out-degrees are distributed according
to a power-law with exponent

1+ (M /B) - (T(2-0) / T(1-01))

O For Flickr, true exponent =1.73, A = 0.0092, o. =
0.84, B = 0.002, calculated exponent = 1.74

O Analogous results hold for del.icio.us, Yahoo!
Answers, LinkedIn

O Interesting as temporal behavior leads to power-
law degree distribution

Mar 28, 2011 TWAW
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), _Compressibility of Flickr over time
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), _Compressibility of the Web

o Snapshots of the web graph 185 Vipeges, 00 ks oo ok

R Average reference chain Bits/node Bits/link

can be losslessly compressed | |w=1[w=s|w=r|w=i|w=s|w=7|w=1|w-; HEEE
oo | 171.45 | 19868 | 19598 | 4422 | 3828 | 35.81 275 2.38
H I h 3 b' d 3 1.04 1.41 170 | 6231 | 5237 | 4830 3.87 3.25
USIng ess t an Its per e ge 1 036 | 055| 064 8124 | 6296 | 55.69 5.05 3.91

Tranpose

. . oo | 1850 | 2534 | 2661 | 3623 3348 | 31.88 225 2.08
BOIdII Vlgna WWW 2004 3 0.69 1.01 123 | 37.68 | 35.09 | 33.81 234 | 218
1 027 | 043| 051 | 39.83| 3697 | 3569 | 247 2.30

. . 118 Mpages, 1 Glinks from WebBase

I d ~2 b g R Average reference chain Bits/node Bits/link
¢ mprove to Its USIn W=1|W=3|W=7|W=1|W=3|W=7|W=1|W=3 |[ld=¥
o0 85.27 | 118.56 | 119.65 30.99 27.79 26.57 3.59 3.22

another data mining_inspired ? 079 | 1.10| 132| 3846 | 3386 | 3229 | 446 | 3.92

0.28 0.43 0.51 46.63 38.80 36.02 5.40 4.49

Tranpose

COmprESSiOn tEChnique oo | 2749 | 3069 | 31.60 | 27.86 | 2597 | 2496 | 323 | 3.01

3 0.76 1.09 1.31 29.20 27.40 26.75 3.38 317
0.29 0.46 0.54 31.09 29.00 28.35 3.60 3.36

Key insights
1. Many web pages have

similar set of neighbors
Boldi, Santini, Vigna WAW 2009 2. Edges tend to be “local”

Buehrer, Chellapilla WSDM 2008

« Subsequent improvements

Mar 28, 2011 TWAW 37



| Main ideas of Boldi-Vigna

Canonical ordering: Sort URLs

17:
18:
19:
20:
21:
22:

lexicographically, treating them as _

strings

www.uchicago.edu/alchemy
www.uchicago.edu/biology
www.uchicago.edu/biology/plant

www.uchicago.edu/biology/plant/copyright
www.uchicago.edu/biology/plant/people
www.uchicago.edu/chemistry

This gives an identifier for each URL

Source and destination of edges are

likely to get nearby IDs
Templated webpages

Due to templates, the
adjacency list of a node is
similar to one of the 7
preceding URLs in the
lexicographic ordering

O Express adjacency list in terms
of one of these

O Eg, consider these adjacency
lists
1:1, 2,4, 8, 16, 32, 64

2:1,4,9, 16, 25, 36, 49, 64
3:1,2,3,5, 8, 13, 21, 34, 55, 89, 144
4:1,4, 8, 16, 25, 36, 49, 64

Many edges are intra-host or intra-site

Mar 28, 2011 TWAW

Encode as (-2), remove 9, add 8
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), BV compression algorithm

Each node has a unique ID from the
canonical ordering

Let w = copying window parameter
To encode a node v

O Check if out-neighbors of v are
similar to any of w-1 previous

nodes in the ordering

O If yes, let u be the leader: use lgw
bits to encode the gap from v to u
+ difference between out-
neighbors of uand v

O If no, write Ig w zeros and encode
out-neighbors of v explicitly

Use gap encoding on top of this

Mar 28, 2011 TWAW
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), _Canonical orderings

O BV compressions depend on a canonical ordering of
nodes

This canonical ordering should exploit neighborhood
similarity and edge locality

O How do we get a good canonical ordering?

Unlike the web page case, it is unclear if social networks
have a natural canonical ordering

O Caveat: BV is only one genre of compression
scheme

Lack of good canonical ordering does not mean graph is
incompressible

Mar 28, 2011 TWAW
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), | Some natural canonical orderings

O Random order

O Natural order
Time of joining in a social network
Lexicographic order of URLs
Crawl order

O Graph traversal orders
BFS and DFS

O Use attributes of the nodes

Eg, Geographic location: order by zip codes
May produce a bucket order

O Ties can be broken using more than one order

Mar 28, 2011 TWAW



), _Shingle ordering heuristic

O Obtain a canonical ordering by bringing nodes with
similar neighborhoods close together

O Fingerprint neighborhood of each node
Order the nodes according to the fingerprint

If fingerprint can capture neighborhood similarity and

edge locality, then it will produce good compression via
BV, provided the graph is amenable

O Use Jaccard coefficient to measure similarity
between nodes

JA,B)=|ANB|/|AUB |

O Double shingle order: break ties within shingle
order using a second shingle

Mar 28, 2011 TWAW 42



Performance of shingle ordering

BV BV + reciprocal links
Graph Natural Shingle Double Graph Natural | Shingle Double
shingle shingle
Flickr 21.8 13.5 13.5 Flickr 16.4 10.9 10.9
UK host 10.8 8.2 8.1 UK host 10.5 8.2 8.1
IndoChina 2.02 2.7 2.7 IndoChina 2.35 2.7 2.7

Mar 28, 2011

Geography does not seem to help for Flickr graph

TWAW
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), | A property of shingle ordering

Theorem. Using shingle ordering, a constant fraction

of edges will be “copied” in graphs generated by
preferential attachment/copying models

O Preferential attachment model: Rich get richer — a
new node links to an existing node with probability
proportional to its degree

O Shows that shingle ordering helps BV-style
compressions in stylized graph models

Mar 28, 2011 TWAW 44



| Gap distribution
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Gap Length

Shingle ordering produces smaller gaps
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Low degree nodes are responsible for incompressibility

Mar 28, 2011

| Who is the culprit

Bits/Link
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) _Incompressibility

Theorem. The following generative models all require €2(log n)
bits per edge on average, even if the node labels are
removed

the preferential attachment model

the copying model

the evolutionary ACL model
multiplication model

Model for navigability in social networks

O We remove labels since BV compresses unlabeled Web
graphs to O(1) bits per edge

O Min-entropy argument: Find a subset of graphs
not too large: to avoid graphs that are “easy”

not too small: should still contain interesting graphs about which we

can show incompressibility
Mar 28, 2011 TWAW 47



), | A compressible graph model

O Begin with a seed graph of nodes with out-degree k,
arranged in a cycle

O Additional nodes arrive in sequence

O An arriving node is inserted at a random place in
the cycle
It links to k-1 out-neighbors of its cycle successor

Mar 28, 2011 TWAW 48



An example, k=2




| Locality in the new model

O If a web designer wants to add a new web page to
her web site
likely to take some existing web page on her website

modify it as needed (perturbing the set of its outlinks) to
obtain the new page

adding a reference to the old web page
and publish the new web page on her website
O Since web pages are sorted by URL in our ordering,
the old and the new page will be close!
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) _Basic properties of the model

O Rich get richer: in the model, in-degrees converge
to a power law with exponent -2-1/(k-1)

O High clustering coefficient
O Polynomially many bipartite cliques
O Logarithmic undirected diameter

O Compressible to O(1) bits per edge
O In fact, BV algorithm achieves O(1) bits per edge

Mar 28, 2011 TWAW
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), _Compressibility

O Theorem. The number of bits required by BV
algorithmis >, _, .Y, (logl), where Y, is the number
of edges of length |

O Theorem. In the model, edge lengths converge to a
power law with exponent -1-1/k

O Corollary. The new model produces graphs
compressible to O(1) bits per edge

Mar 28, 2011 TWAW 52



), _Long gets longer

© 0 0@ O

Recall the process: pick a leader node uar and place new
node to its immediate left

The probability to become longer is proportional to the
number of nodes “below” the edge, ie, its length

Making this precise requires pinning down subtle
combinatorial properties of the model
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| Summary

Temporal analysis of behavioral networks yields richer
understanding of its dynamics
Degree distributions
Diameter and density
Components
Compressibility
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) _Future directions

O General questions
Richer models
Surprising properties
Mathematical tools for analysis
O Specific questions
Conversational trees
Information spread, influence vs correlation

Can we compress social networks better?
Good algorithms for compression-friendly orderings

Mar 28, 2011 TWAW
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