Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods for deriving dynamics

Static

Dynamic

Estimative

Open questions

Deriving Dynamics of Web Pages: A Survey

Marilena Oita^{1,2} and Pierre Senellart¹

¹Telecom ParisTech, INFRES DbWeb team

²Webdam project, INRIA Saclay Ile-de-France

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

TWAW, Hyderabad, India 28th of March, 2011

Outline

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods fo deriving dynamics

Static

Dynamic

Estimative

Open questions

1 Motivation

2 Methods for deriving dynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

3 Static

4 Dynamic

Web's dynamics

evolution which implies ephemerality

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods for deriving dynamics

Static

Dynamic

Estimative

Open questions the Web is dynamic by nature

- \rightarrow difficulty to:
 - keep track of the updated information
 - capture relevant changes

the strategy of crawl must be adapted to the change frequency of the Web page (=its dynamics)

OBS: dynamics varies in time, so is usually very difficult to determine its patterns without a deeper knowledge of the Web page/site in cause

Use case: Incremental Crawl

problematique

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods for deriving dynamics

Static

Dynamic

Estimative

Open questions

- as opposed to snapshot crawl, it actively crawls only changed parts of a Web page
- Q: how often the Web page shall be crawled in order not to miss changes?

Crawler's difficulty: the URL doesn't change, but the page itself does!

 \rightarrow new versions of the same object referenced through the URL

Usually, the temporal properties of Web pages are empirically inferred:

the frequency of change = the mean of the intervals between the update timestamps

Change types related to the Web page's characteristic

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods for deriving dynamics

Static

Dynamic

Estimative

Open questions Changes in Web documents can occur at different levels:

- content: changes in the textual data
- structure: related to the hierarchical model of a Web page
- presentation: the way of presenting the information (visually)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

behaviour: in HTML active elements

Detecting change

and derive temporal properties from Web pages

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods for deriving dynamics

Static

Dynamic

Estimative

Open questions is needed in many application domains:

- Web crawling
 - 1 versioning
 - 2 adjusting the refresh rate
 - 3 maintaining the temporal coherence of linked pages

- information monitoring systems
- Web caching improving
- servicing of continuous queries
- data mining

Detecting change

and derive temporal properties from Web pages

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods for deriving dynamics

Static

Dynamic

Estimative

Open questions is needed in many application domains:

- Web crawling
 - 1 versioning
 - 2 adjusting the refresh rate
 - 3 maintaining the temporal coherence of linked pages

- information monitoring systems
- Web caching improving
- servicing of continuous queries
- data mining etc...

Techniques

for deriving temporal properties from Web pages

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods for deriving dynamics

Static

Dynamic

Estimative

Open questions Different approaches:

- static: timestamps can be identified in content or dynamics is directly derived from linked (meta)data files
- 2 dynamic: change reveals itself in the active process of comparing versions
- 3 estimative: an estimation is produced, based on an initial change history and a statistical model

Timestamping that operates on the Web page itse

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods fo deriving dynamics

Static

Dynamic

Estimative

Open questions

1 check HTTP timestamp

- ETag: "497bef-1fcb-47f20645"
- Last-Modified: Tue, 01 Apr 2008 09:54:13 GMT

- Cache-Control: max-age=60, private
- Expires: Tue, 01 Apr 2008 13:25:55 GMT
- 1 check for timestamp in content:
 - keywords that denote time
 - date recognition

Timestamping that operates on the Web page's reference

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods for deriving dynamics

Static

Dynamic

Estimative

Open questions ■ using the linked data: the neighborhood

use documents that contain temporal metadata and refer to a Web page / site

Timestamping that operates on the Web page's reference

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods fo deriving dynamics

Static

Dynamic

Estimative

Open questions

- using the linked data: the neighborhood
- use documents that contain temporal metadata and refer to a Web page / site (reliable, but not always available)

1 RSS feeds: pubDate, lastBuildDate, ttl

2 Sitemaps: lastmod, changefreq (for a given URL)

Dynamic: actively compare versions to detect change

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods fo deriving dynamics

Static

Dynamic

Estimative

Open questions

In the comparison process, we must:

- 1 have versions to compare
- 2 define a model of the Web page
- 3 specify similarity metrics between model elements

Dynamic approaches:

- suppose versions provided most of the time
- it would set the timestamp of a new version as the date when change was detected

Techniques of assessing dynamics

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods fo deriving dynamics

Static

Dynamic

Estimative

Open questions From the Web page modeling point of view, we have:

1. flat-file string : structure and code properties are ignored in the process

2. DOM tree

for a tree entity (node/subtree/branch) the data structure usually contains:

- an entity's id
- child-parent relationship
- tag name
- content
- the level (=*depth*) of an entity in the tree

Techniques of assessing dynamics

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods fo deriving dynamics

Static

Dynamic

Estimative

Open questions

3. weighted bipartite graph

- from a unordered tree model, after pruning, a set of nodes remains
- nodes are linked through weighted edges
- the weight represents the edit scripting cost of transforming an entity into another
- usually Hungarian algorithm is applied
- 4. Page Digest encoding
 - clear separation between content and structure

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

high efficiency because of faster parsing

Pre-processing steps in hierarchical models trees

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

- Motivation
- Methods fo deriving dynamics
- Static
- Dynamic
- Estimative
- Open questions

- Having 2 versions of a Web page, do:
 - transform each from HTML to XML: parsing HTML tag soup into a
 - clean tree structure using XSLT/XPath
 - 2 filtering of irrelevant tag elements (for instance, scripts)
 - apply similarity metrics between the model entities of the two versions
 - 4 pruning: eliminate identical (or too dissimilar) elements
 - apply the actual technique(algorithm) for change detection

Similarity metrics

used in change detection

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods fo deriving dynamics

Static

Dynamic

Estimative

Open questions

String matching techniques:

- Jaccard-based
- 2 hash-based (signatures, shingling)
- Iongest common subsequence: diff algorithms (*HTMLDiff*)
- 4 root mean square (RMS) of the string's ASCII codes

Similarity metrics

used in change detection

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods fo deriving dynamics

Static

Dynamic

Estimative

Open questions

Matching in hierarchical models:

- 1 edit scripting: MH-Diff, SCD
- 2 trivalent quantitative formula for change: CMW

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Statistical methods

change as a random event that can be forsee based on the history

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods for deriving dynamics

Static

Dynamic

Estimative

Open questions Having an observed change history (a set of versions), estimative models predict the next date of change.

Models:

- Poisson process: model random events, that occur independently (homogenuous Poisson)
- Kalman filters: recursive estimator that gives the internal state of a linear dynamic system, from a series of measurements (timestamps, in this case!)

Summary of the presented approaches

Discussion

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods fo deriving dynamics

Static

Dynamic

Estimative

Open questions

- 1 further studies on static approaches to timestamping
- relevant change detection: a challenge because we need to define what is important and a measure of it:

the role of semantics and the standardization of time aspects in protocols

Thank You!

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods for deriving dynamics

Static

Dynamic

Estimative

Open questions

Questions?

References

Deriving Dynamics of Web Pages: A Survey

Marilena Oita

Motivation

Methods for deriving dynamics

Static

Dynamic

Estimative

Open questions

- **MH-Diff**: Chawathe and Garcia-Molina. Meaningful change detection in structured data
- Poisson: Cho and Garcia-Molina. Estimating frequency of change
- **3 CMW**: Flesca and Masciari. Efficient and effective Web page change detection
- SCD: Lim and Ng. An automated change-detection algorithm for HTML documents based on semantic hierarchies
- **5** on relevance: Oita and Senellart. Archiving data objects using web feeds
- 6 Page Digest: Rocco, Buttler and L. Liu. Page digest for large-scale Web services