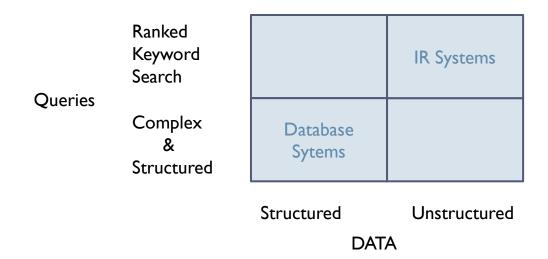


Changing Vision for Access to Web Archives (WAC)

Zeynep PEHLIVAN

Anne DOUCET

Stéphane GANçARSKI



Introduction

WACs

- Access to WACs
 - ► Full-Text Search (with temporal dimension)
 - Navigation
 - Wayback Machine
- Web Users ≠ WAC Users

Data & Queries

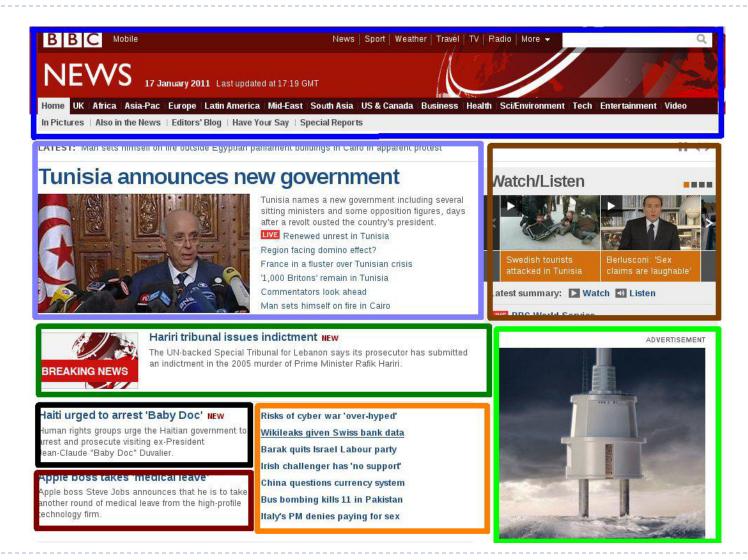
Keyword search
Complex query operations (information synthesis)
Ranked results!

TEMPORAL DIMENSION

Outline

- Features of Query Language for WAC (WACQL)
- Data Model
 - Modelling Time
 - Modelling WAC
- Operators
- Related Works
- Conclusion

Features of WACQL


- Eliminates duplicates (Distinct)
- Enables temporal ranking and grouping
- Is user-friendly
- Enables block-based search
- Takes into account incompleteness and temporal coherence

Block-Based Search

- Diversity of web page content
 - Segmentation Algorithmes
- Relevance
- Noisy Information
 - Advertisement, navigation bars, decoration stuffs, interaction forms, copyrights, and contact information
- Popular IR method for web

Giving structure to pages

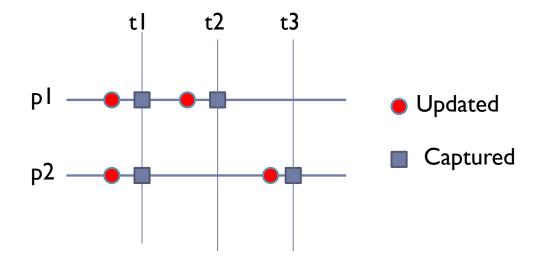
Blocks Example

Importance

Block Importance

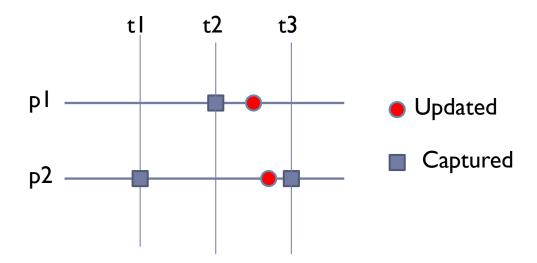
The block on the center of a page is more important than one on the header

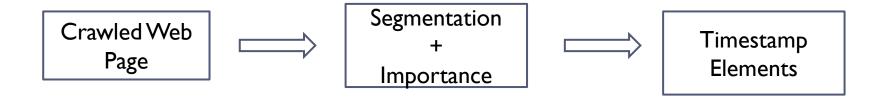
Other Parameters


Page rank, page depth in the site etc.

[Song 2004]

Incompleteness


Containing all the the versions of all pages


Impossible to have a complete archive due to the large number of pages to crawl and the limitations of resources

Temporal Coherence

A collection is considered coherent, if it reflects the real state of the collection, at least, at one point in time

Data Model

Modelling Time

Modelling WAC

Modelling Time

- Different time in WACs
 - Last-modified time, Date, Expires
 - Content time
 - Crawl time
- Allen's interval-based representation of temporal data

Elements

- Frame Block
- Content
- Importance
- Links
- Concrete Block

* Each element has temporal and non-temporal definition

Frame Block

- Keeps properties of a block:
 - Url to which it belongs
 - Dewey identifier that indicates its place in the block hierarchy
 - Validity interval $fb = (URL, DeweyID, [fbt_s, fbt_e))$

blue: (www.bbc.co.uk/news, 1, [t1, now))

pink: (www.bbc.co.uk/news, 2.1, [t1, now))

green: (www.bbc.co.uk/news, 2.2, [t1, now))

Content

- Non-textual (images, videos etc.)
 - Represented by « binary »
 - More than one allowed for each block

Textual

- Represented by bag of words
- Only one for each block

Content (2)

$$\begin{array}{l} ((W \, oody, Allen, ageing...), [t2, now)) \\ (binary, [t3, now)) \end{array} \right\} green \\ ((Sarkozy, Carla, W oddy, Allen...), [t3, now)) \\ (binary, [t3, now)) \end{array} \right\} pink$$

Importance

- Calculated according to the importance model of [Song 2004]
- Depends on block's location, area size, content, etc.

Concrete Block

A region in a web page

$$cb = (fb, \{c\}, \{i\})$$

$$\left(green, \left\{ \begin{matrix} (French, hostage..., [t1, t2)) \\ (binary, [t1, t2)) \\ (Woody, ageing..., [t2, now)) \\ (binary, [t3, now)) \end{matrix} \right\}, \left\{ \begin{matrix} (0.1, [t1, t2)) \\ (0.3, [t2, t3)) \\ (0.4, [t3, now)) \end{matrix} \right\} \right)$$

$$cb^{t} = (fb^{-}, \{c^{-}\}, i^{-})$$

Links

- Hyperlinks in web pages
- ▶ Type: Global, local, interior

$$l = (label, type, from, to, [lt_s, lt_e))$$

```
("Mobile", local, blue, "/news/mobile", [t1, now))

("News", interior, blue, "#", [t1, now))

("Why America's gun laws won't change", local, pink, "/news/politics-25698422", [t1, t2))

("US-French push for Iran sanctions", local, pink, "/news/politics-2457913", [t2, t3))
```

Page

A page is a set of concrete blocks

$$p_{url} = \left\{ \begin{array}{l} (blue, (News, [t1, now)), (0.4, [t1, now))), \\ \left(\begin{pmatrix} ((Obama, gun, laws...), [t1, t2)) \\ ((binary, [t1, t2))) \\ ((Sarkozy, Obama...), [t2, t3)) \\ (binary, [t2, t3)) \\ ((Sarkozy, Woody,...), [t3, now)) \\ (binary, [t3, now)) \end{pmatrix}, \begin{cases} (0.1, [t1, t2)) \\ (0.3, [t2, t3)) \\ (0.4, [t3, now)) \end{pmatrix} \\ \left(\begin{pmatrix} (French, hostage..., [t1, t2)) \\ (binary, [t1, t2)) \\ (Woody, ageing..., [t2, now)) \\ (binary, [t3, now)) \end{pmatrix}, \begin{cases} (0.1, [t1, t2)) \\ (0.3, [t2, t3)) \\ (0.3, [t2, t3)) \\ (0.4, [t3, now)) \end{pmatrix} \\ \right) \\ \end{array} \right\}$$

- A snaphot of a page is a set of snapshot of concrete blocks
- Built dynamically

Site

A site is a set of web pages

$$s_{regex} = \{p_{url1}, p_{url2}, p_{url3}...p_{urln}\}$$

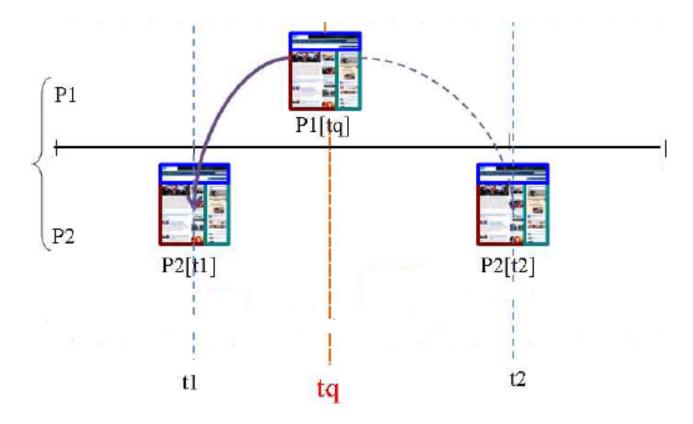
- A snapshot of a site is a set of snaphot of pages
- Built dynamically

Operators

- Time Operators
 - Allen's 13 interval operators op: period x period \rightarrow bool
 - ▶ T-Union, T-Intersect, Minus, Collapse / Expand
- Unary Operators
 - Select, Project, Group By
- Set Operators
 - Union, Intersect, Difference
- Aggregate Operators
 - Sum, Average, Count, Max, Min
- Ordering Operators
 - Rank, Order By
- WAC specific operators
 - ► FixDate, Wayback, Coherent
- Navigation Operators

Navigation Operators

Out, out_b. CB × period → CB Page D Page E ▶ In: CB × period \rightarrow CB ▶ jump+ : CB × int × period → CB ▶ jump $-: CB \times int \times period \rightarrow CB$ Page A, Page B Page C


In-Block

- Logical Full-Text Operator
- Example « Woody IN-BLOCK AND Sarkozy »

Coherent (Temporal Coherence)

Find the most coherent version for navigation

NEAREST/RECENT/BOTH (Incompleteness)

- NEAREST: it returns the nearest time by minimizing |t − tx|
- ▶ RECENT: it returns the closest time before t. It is the default operator, if the user does not specify another one.
- ▶ BOTH: it returns a time interval constructed with the most closest time before t and after t.

Related Work (1)

Web Archiving

- **IIPC**
- Wayback Machine (IA) [Tofel 2007]
- NutchWAX [Stack 2006]

Web Based Query Languages

- WebSQL [Mihaila 1996], WebOQL[Arocena 1997]
- WebBase[Raghavan 2003] ,WHOWEDA [Bhowmick 2003]

Block-Based Search

- Block- Based Indexing [Bruno et al. 2009]
- Block- based IR Model [Li et al. 2004]
- ▶ Block-based link Analysis [Cai et al 2004]

Related Work (2)

In conclusion

- ▶ To access to WACs: Wayback + Full-text search + Navigation
 - No complex queries
 - Does not take into account different topics
- Web Based Query Languages
 - No temporal dimension
 - Does not take into account different topics
- Block-based Search
 - No temporal dimension
 - No complex queries

Conclusion & Future Works

WAC Query Language

- Visual blocks as an unit of retrieval
- Temporal dimension
- Complex queries
- Ranked keyword queries

Future Works

- Implementation
- Temporal Block Based Indexing
- Temporal Block IR Model

THANK YOU

