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Motivation

Success of online collaboration websites depends critically on content
contributed by users.

@ For example, StackExchange vs. Google knol.

Problem: Key deciding factors of success and failure of online
collaboration websites?

Goal: Uncover hidden nonlinear behavior in activity dynamics.
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Related Work

Nonlinear Time Series Analysis and its Applications

Nonlinear time series analysis studies reconstructions of high dimensional
dynamical systems from low dimensional ones.

Example applications:
@ Small and Tse [1] predicted the outcome of a roulette wheel.
@ Hsieh [2] found nonlinear behavior in stock returns.
@ Strozzi et al. [3] detected events in the stock market.

@ More examples in Marwan et al. [4] and Bradley and Kantz [5].

New application: activity dynamics in online collaboration websites.
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Related Work

Dynamical Systems for Networks

Dynamical systems provide mathematical formalizations for the evolution
of numerical quantities over time [6, 7].

Applications of dynamical system theory to study activity in networks:
@ Ribeiro [8] models daily active users in online communities with
behavior of active and inactive users.
o Walk et al. [9] model activity in collaboration networks with activity
decay rate and peer influence growth.

Our approach: Characterize activity by its propensity to have originated in
a dynamical system
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Methodology

Nonlinearity Tests

We assess nonlinearity with 9 statistical tests:

@ AR process-based tests:

Broock, Dechert and Scheinkman [BDS] test [10] on ARIMA residuals
Keenan's one-degree test for nonlinearity [11]

McLeod-Li test [12]

Tsay's test for nonlinearity [13]

Likelihood ratio test for threshold nonlinearity [14]

@ Neural Networks-based tests:

o Teraesvirta's neural network test [15]
o White neural network test [16]

@ Other tests:

o Wald-Wolfowitz runs test [17] on the number of times time series grows
e Surrogate test - time asymmetry [18]
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Methodology

Reconstructing nonlinear dynamical system from univariate
time series

We reconstruct state space with Takens' embedding theorem [19] to get:
Re = (Xt, Xt—1y Xt—275 - - - aXt—(m—l)T) € R™. (1)

Example: Lorenz dynamical system
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Methodology

Reconstructing nonlinear dynamical system from univariate
time series

We reconstruct state space with Takens' embedding theorem [19] to get:
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Methodology

Forecasting univariate time series

We employ linear and nonlinear models to forecast time series.

@ Linear models:
e Linear regression: linear combination of Fourier terms and trend
o ARIMA models: differenced, linear combination of auto-regressors and
lagged moving average error terms
e Exponential Smoothing (ETS) models: linear combination of lagged
terms, such as level, trend, seasonality and error
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Methodology

Forecasting univariate time series

We employ linear and nonlinear models to forecast time series.

@ Linear models:
e Linear regression: linear combination of Fourier terms and trend
o ARIMA models: differenced, linear combination of auto-regressors and
lagged moving average error terms
e Exponential Smoothing (ETS) models: linear combination of lagged
terms, such as level, trend, seasonality and error

@ Nonlinear models:

@ Reconstruct dynamical system properties with Takens embedding
o Forecast univariate time series by following nearby trajectories in
reconstructed state space
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Methodology

Recurrence Analysis
Analyze reconstructed state spaces with Recurrence Plots:
Rij(e) = ©(e — [[Xi = XI)- (2)

Example: Lorenz dynamical system

First 3 dimensions of Lorenz's reconstructed phase space

Xi22
o

Nonlinear Characterization of Activity Dynamics in Online Collaboration Websites 3. April 2017 8 /13



Methodology

Recurrence Analysis

Analyze reconstructed state spaces with Recurrence Plots:

Rij(€) = ©(e — [IXi = X11)-

Example: Lorenz dynamical system

First 3 dimensions of Lorenz's reconstructed phase space
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Takens vectors index
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Experimental Setup

Datasets, pre-processing & experiment configuration

Datasets and pre-processing:
@ Datasets: 16 randomly picked StackExchange Q&A portals
@ Activity-based time series: number of questions, answers and
comments per user per day
@ Pre-processing: weekly aggregation, burn-in, detrend
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Experimental Setup

Datasets, pre-processing & experiment configuration

Datasets and pre-processing:
@ Datasets: 16 randomly picked StackExchange Q&A portals

@ Activity-based time series: number of questions, answers and
comments per user per day

@ Pre-processing: weekly aggregation, burn-in, detrend

Test and forecast setup:

@ Significance level of the 9 tests for nonlinearity: 95%

o Categorize datasets on number of tests indicating nonlinearity
@ Forecast 1 year of activity for all datasets
°

Compare forecast root mean squared error (RMSE) of the 4 models
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Results & Discussion

Nonlinearity test results and forecast performance
comparison

Group datasets on nonlinearity test results and rank forecast RMSE per
group with the Friedman test [20]:

@ 10 out of 16 datasets with < 4/9 tests indicating nonlinearity.
Friedman test rank: 1. ETS, 2. ARIMA, 3. Nonlinear, 4. Linear

@ 6 out of 16 datasets with > 5/9 tests indicating nonlinearity.
Friedman test rank: 1. Nonlinear, 2. ARIMA, 2. ETS, 4. Linear
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Results & Discussion

Nonlinearity test results and forecast performance
comparison

Group datasets on nonlinearity test results and rank forecast RMSE per
group with the Friedman test [20]:

@ 10 out of 16 datasets with < 4/9 tests indicating nonlinearity.
Friedman test rank: 1. ETS, 2. ARIMA, 3. Nonlinear, 4. Linear

@ 6 out of 16 datasets with > 5/9 tests indicating nonlinearity.
Friedman test rank: 1. Nonlinear, 2. ARIMA, 2. ETS, 4. Linear

Observations:
o Neural network-based tests are more sensitive to nonlinear dynamics

@ Presence of nonlinear dynamics impacts forecast and modeling efforts
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Results & Discussion

Recurrence Plot Analysis

Study reconstructed state spaces of 2 datasets deemed nonlinear:

The RP empowers activity dynamics modeling efforts:

@ Math: Drift, chaotic dynamics and slowly changing states
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Results & Discussion

Recurrence Plot Analysis

Study reconstructed state spaces of 2 datasets deemed nonlinear:
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The RP empowers activity dynamics modeling efforts:
@ Math: Drift, chaotic dynamics and slowly changing states

@ Bitcoin: Periodic dynamics and non-stationary transitions
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Conclusions & Future Work

Conclusions & Future Work

Conclusions:

@ Group activity-based time series by propensity to originate from
dynamical systems

@ Increase accuracy in activity forecast experiments
@ Customize activity models with Recurrence Plots

@ More and longer time series — more conclusive results
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Conclusions & Future Work

Conclusions & Future Work

Conclusions:

@ Group activity-based time series by propensity to originate from
dynamical systems

@ Increase accuracy in activity forecast experiments
@ Customize activity models with Recurrence Plots

@ More and longer time series — more conclusive results

Future work:
@ Understand reason for differences in nonlinear behavior
@ Study underlying collaboration networks

@ Recurrence Quantification Analysis
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Conclusions & Future Work

Questions?

Thank you very much for your time!
Questions?
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Backup and References

Results

table

Dataset Weeks | 7 | m Nonlin. Positive ARIMA ETS Linear | Nonlin.
test score nonlin. tests

englishP 240 2| 9 2/9 [2] [13] 0.6794 0.4452 | 0.3329 0.3080
unixP 239 1 7 2/9 [2] [13] 0.2091 0.2092 0.2418 0.2074
chemistry? 158 2 | 7 3/9 [2] [13] [4] 0.4982 0.2539 | 0.3247 0.4610
webmasters 244 1 8 3/9 [9] [13] [15] 0.2313 0.2528 0.3341 0.2346
chess 148 2 | 8 4/9 [2] [o] [13] [15] 0.2545 -a 0.5622 0.5110
history 177 1 9 4/9 [2] [9] [13] [4] 0.3503 0.2368 0.3044 0.4052
linguistics 181 2 | 6 4/9 [2] [9] [13] [15] 0.2512 0.2704 | 0.3009 0.3280
sqa 200 3 9 4/9 [2] [9] [13] [15] 1.8136 0.2531 0.6549 0.3903
texP 241 1 7 4/9 [13] [21] [4] [15] 0.1589 0.1580 0.2767 0.2751
tridion 107 1| 7 4/9 [19] [10] [9] [13] 0.2717 -a 0.6144 -2
Fricdman test rank of models’ forecast RMSE on datasets with nonlin. test score < 5/9 2 T 1 3
arduino 56 T [ 10 579 12] [19] [10] (9] [13] 0.3480 = =

sports 159 1 7 5/9 [2] [9] [13] [4] [15] 0.2442 0.3348 0.4019 0.3323
ux 239 2 | 8 5/9 [2] [10] [9] [13] [21] 0.3479 0.1743 | 0.3491 0.1374
bitcoin 182 4 11 6/9 [2] [19] [10] [9] [13] [15] 0.6099 0.5549 0.5938 0.5781
math? 242 2 8 6/9 [2] [19] [13] [21] [4] [15] 0.1327 0.2314 0.3521 0.2912
bicycles 235 2 7/9 [2] [19] [10] [9] [13] [4] [15] 0.2971 0.3097 | 0.3252 0.2805
Friedman test rank of models’ forecast RMSE on datasets with nonlin. test score > 5/9 Bl 2 1 T
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