Nonlinear Characterization of Activity Dynamics in Online Collaboration Websites

Tiago Santos ¹ Simon Walk ² Denis Helic ³

¹Know-Center, Graz, Austria

²Stanford University

³Graz University of Technology

3. April 2017

ELE DOG

Motivation

Success of online collaboration websites depends critically on content contributed by users.

• For example, StackExchange vs. Google knol.

Problem: Key deciding factors of success and failure of online collaboration websites?

Goal: Uncover hidden nonlinear behavior in activity dynamics.

Nonlinear Time Series Analysis and its Applications

Nonlinear time series analysis studies reconstructions of high dimensional dynamical systems from low dimensional ones.

Example applications:

- Small and Tse [1] predicted the outcome of a roulette wheel.
- Hsieh [2] found nonlinear behavior in stock returns.
- Strozzi et al. [3] detected events in the stock market.
- More examples in Marwan et al. [4] and Bradley and Kantz [5].

New application: activity dynamics in online collaboration websites.

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

Dynamical Systems for Networks

Dynamical systems provide mathematical formalizations for the evolution of numerical quantities over time [6, 7].

Applications of dynamical system theory to study activity in networks:

- Ribeiro [8] models daily active users in online communities with behavior of active and inactive users.
- Walk et al. [9] model activity in collaboration networks with activity decay rate and peer influence growth.

Our approach: Characterize activity by its propensity to have originated in a dynamical system

Nonlinearity Tests

We assess nonlinearity with 9 statistical tests:

- AR process-based tests:
 - Broock, Dechert and Scheinkman [BDS] test [10] on ARIMA residuals
 - Keenan's one-degree test for nonlinearity [11]
 - McLeod-Li test [12]
 - Tsay's test for nonlinearity [13]
 - Likelihood ratio test for threshold nonlinearity [14]
- Neural Networks-based tests:
 - Teraesvirta's neural network test [15]
 - White neural network test [16]
- Other tests:
 - Wald-Wolfowitz runs test [17] on the number of times time series grows

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

• Surrogate test - time asymmetry [18]

Reconstructing nonlinear dynamical system from univariate time series

We reconstruct state space with Takens' embedding theorem [19] to get:

$$R_t = (x_t, x_{t-\tau}, x_{t-2\tau}, \dots, x_{t-(m-1)\tau}) \in \mathbb{R}^m.$$

$$\tag{1}$$

Example: Lorenz dynamical system

Lorenz system

Reconstructing nonlinear dynamical system from univariate time series

We reconstruct state space with Takens' embedding theorem [19] to get:

$$R_t = (x_t, x_{t-\tau}, x_{t-2\tau}, \dots, x_{t-(m-1)\tau}) \in \mathbb{R}^m.$$

$$\tag{1}$$

5000

Example: Lorenz dynamical system

Tiago Santos Nonlinear Characterization of Activity Dynamics in Online Collaboration Websites 3. April 2017 6 / 13

Reconstructing nonlinear dynamical system from univariate time series

We reconstruct state space with Takens' embedding theorem [19] to get:

$$R_t = (x_t, x_{t-\tau}, x_{t-2\tau}, \dots, x_{t-(m-1)\tau}) \in \mathbb{R}^m.$$

$$\tag{1}$$

Example: Lorenz dynamical system

Forecasting univariate time series

We employ linear and nonlinear models to forecast time series.

- Linear models:
 - Linear regression: linear combination of Fourier terms and trend
 - ARIMA models: differenced, linear combination of auto-regressors and lagged moving average error terms
 - Exponential Smoothing (ETS) models: linear combination of lagged terms, such as level, trend, seasonality and error

Forecasting univariate time series

We employ linear and nonlinear models to forecast time series.

- Linear models:
 - Linear regression: linear combination of Fourier terms and trend
 - ARIMA models: differenced, linear combination of auto-regressors and lagged moving average error terms
 - Exponential Smoothing (ETS) models: linear combination of lagged terms, such as level, trend, seasonality and error
- Nonlinear models:
 - Reconstruct dynamical system properties with Takens embedding
 - Forecast univariate time series by following nearby trajectories in reconstructed state space

A B M A B M

Recurrence Analysis

Analyze reconstructed state spaces with Recurrence Plots:

$$R_{i,j}(\epsilon) = \Theta(\epsilon - \|\vec{x}_i - \vec{x}_j\|).$$
⁽²⁾

Example: Lorenz dynamical system

First 3 dimensions of Lorenz's reconstructed phase space

Recurrence Analysis

ę

Analyze reconstructed state spaces with Recurrence Plots:

$$R_{i,j}(\epsilon) = \Theta(\epsilon - \|\vec{x}_i - \vec{x}_j\|).$$
⁽²⁾

Example: Lorenz dynamical system

X:

First 3 dimensions of Lorenz's reconstructed phase space

Datasets, pre-processing & experiment configuration

Datasets and pre-processing:

- Datasets: 16 randomly picked StackExchange Q&A portals
- Activity-based time series: number of questions, answers and comments per user per day
- Pre-processing: weekly aggregation, burn-in, detrend

JIN NOR

Datasets, pre-processing & experiment configuration

Datasets and pre-processing:

- Datasets: 16 randomly picked StackExchange Q&A portals
- Activity-based time series: number of questions, answers and comments per user per day
- Pre-processing: weekly aggregation, burn-in, detrend

Test and forecast setup:

- Significance level of the 9 tests for nonlinearity: 95%
- Categorize datasets on number of tests indicating nonlinearity
- Forecast 1 year of activity for all datasets
- Compare forecast root mean squared error (RMSE) of the 4 models

< 回 > < 三 > < 三 > 三 三 < つ Q (P)

Nonlinearity test results and forecast performance comparison

Group datasets on nonlinearity test results and rank forecast RMSE per group with the Friedman test [20]:

- 10 out of 16 datasets with $\leq 4/9$ tests indicating nonlinearity. Friedman test rank: 1. ETS, 2. ARIMA, <u>3. Nonlinear</u>, 4. Linear
- 6 out of 16 datasets with ≥ 5/9 tests indicating nonlinearity. Friedman test rank: <u>1. Nonlinear</u>, 2. ARIMA, 2. ETS, 4. Linear

A ∃ ► A ∃ ► ∃ | = \0 Q Q

Nonlinearity test results and forecast performance comparison

Group datasets on nonlinearity test results and rank forecast RMSE per group with the Friedman test [20]:

- 10 out of 16 datasets with $\leq 4/9$ tests indicating nonlinearity. Friedman test rank: 1. ETS, 2. ARIMA, <u>3. Nonlinear</u>, 4. Linear
- 6 out of 16 datasets with ≥ 5/9 tests indicating nonlinearity. Friedman test rank: <u>1. Nonlinear</u>, 2. ARIMA, 2. ETS, 4. Linear

Observations:

- Neural network-based tests are more sensitive to nonlinear dynamics
- Presence of nonlinear dynamics impacts forecast and modeling efforts

A ∃ ► A ∃ ► ∃ E

Recurrence Plot Analysis

Study reconstructed state spaces of 2 datasets deemed nonlinear:

The RP empowers activity dynamics modeling efforts:

• Math: Drift, chaotic dynamics and slowly changing states

Recurrence Plot Analysis

Study reconstructed state spaces of 2 datasets deemed nonlinear:

The RP empowers activity dynamics modeling efforts:

- Math: Drift, chaotic dynamics and slowly changing states
- Bitcoin: Periodic dynamics and non-stationary transitions

Conclusions & Future Work

Conclusions:

- Group activity-based time series by propensity to originate from dynamical systems
- Increase accuracy in activity forecast experiments
- Customize activity models with Recurrence Plots
- $\bullet\,$ More and longer time series $\to\,$ more conclusive results

ELE NOR

Conclusions & Future Work

Conclusions:

- Group activity-based time series by propensity to originate from dynamical systems
- Increase accuracy in activity forecast experiments
- Customize activity models with Recurrence Plots
- $\bullet\,$ More and longer time series $\to\,$ more conclusive results

Future work:

- Understand reason for differences in nonlinear behavior
- Study underlying collaboration networks
- Recurrence Quantification Analysis

ELE SOC

Questions?

Thank you very much for your time! Questions?

Tiago Santos Nonlinear Characterization of Activity Dynamics in Online Collaboration Websites 3. April 2017 13 / 13

ELE NOR

Results table

Dataset	Weeks	τ	<i>m</i>	Nonlin. test score	Positive nonlin. tests	ARIMA	ETS	Linear	Nonlin.
english ^b	240	2	9	2/9	[2] [13]	0.6794	0.4452	0.3329	0.3080
unix ^b	239	1	7	2/9	[2] [13]	0.2091	0.2092	0.2418	0.2074
chemistry ^b	158	2	7	3/9	[2] [13] [4]	0.4982	0.2539	0.3247	0.4610
webmasters	244	1	8	3/9	[9] [13] [15]	0.2313	0.2528	0.3341	0.2346
chess	148	2	8	4/9	[2] [9] [13] [15]	0.2545	_a	0.5622	0.5110
history	177	1	9	4/9	[2] [9] [13] [4]	0.3503	0.2368	0.3044	0.4052
linguistics	181	2	6	4/9	[2] [9] [13] [15]	0.2512	0.2704	0.3009	0.3280
sqa	200	3	9	4/9	[2] [9] [13] [15]	1.8136	0.2531	0.6549	0.3903
tex ^b	241	1	7	4/9	[13] [21] [4] [15]	0.1589	0.1580	0.2767	0.2751
tridion	107	1	7	4/9	[19] [10] [9] [13]	0.2717	- ^a	0.6144	- ^a
Friedman test rank of models' forecast RMSE on datasets with nonlin. test score $< 5/9$						2	1	4	3
arduino	56	1	10	5/9	[2] [19] [10] [9] [13]	0.3489	- ^a	- ^a	- ^a
sports	159	1	7	5/9	[2] [9] [13] [4] [15]	0.2442	0.3348	0.4019	0.3323
ux	239	2	8	5/9	[2] [10] [9] [13] [21]	0.3479	0.1743	0.3491	0.1374
bitcoin	182	4	11	6/9	[2] [19] [10] [9] [13] [15]	0.6099	0.5549	0.5938	0.5781
math ^b	242	2	8	6/9	[2] [19] [13] [21] [4] [15]	0.1327	0.2314	0.3521	0.2912
bicycles	235	2	7	7/9	[2] [19] [10] [9] [13] [4] [15]	0.2971	0.3097	0.3252	0.2805
Friedman test rank of models' forecast RMSE on datasets with nonlin. test score $\geq 5/9$ 2 ^c 2 ^c 4 1									1

1/6

References I

- Small, M and Tse, CK. Predicting the outcome of roulette. Chaos: an interdisciplinary journal of nonlinear science 2012;22:033150.
 - Hsieh, DA. Chaos and nonlinear dynamics: application to financial markets. The journal of finance 1991;46:1839–1877.
- Strozzi, F, Zaldívar, JM, and Zbilut, JP. Application of nonlinear time series analysis techniques to high-frequency currency exchange data. Physica A: Statistical Mechanics and its Applications 2002;312:520–538.
- Marwan, N, Romano, MC, Thiel, M, and Kurths, J. Recurrence plots for the analysis of complex systems. Physics reports 2007;438:237–329.

References II

- Bradley, E and Kantz, H. Nonlinear time-series analysis revisited. Chaos: An Interdisciplinary Journal of Nonlinear Science 2015;25:097610.
- Luenberger, DGDG. Introduction to dynamic systems; theory, models, and applications. Tech. rep. 1979.
- Guckenheimer, J and Holmes, PJ. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Vol. 42. Springer Science & Business Media, 2013.
 - Ribeiro, B. Modeling and predicting the growth and death of membership-based websites. In: Proceedings of the 23rd international conference on World Wide Web. ACM. 2014:653–664.
 - Walk, S, Helic, D, Geigl, F, and Strohmaier, M. Activity dynamics in collaboration networks. ACM Transactions on the Web (TWEB) 2016;10:11.

References III

- Broock, W, Scheinkman, JA, Dechert, WD, and LeBaron, B. A test for independence based on the correlation dimension. Econometric reviews 1996;15:197–235.
 - Keenan, DM. A Tukey nonadditivity-type test for time series nonlinearity. Biometrika 1985;72:39–44.
- McLeod, AI and Li, WK. Diagnostic checking ARMA time series models using squared-residual autocorrelations. Journal of Time Series Analysis 1983;4:269–273.
 - Tsay, RS. Nonlinearity tests for time series. Biometrika 1986;73:461–466.
 - Chan, KS. Percentage points of likelihood ratio tests for threshold autoregression. Journal of the Royal Statistical Society. Series B (Methodological) 1991:691–696.

References IV

- Teräsvirta, T, Lin, CF, and Granger, CW. Power of the neural network linearity test. Journal of Time Series Analysis 1993;14:209–220.
- Lee, TH, White, H, and Granger, CW. Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests. Journal of Econometrics 1993;56:269–290.
- Siegel, S. Nonparametric statistics for the behavioral sciences. 1956.
 - Schreiber, T and Schmitz, A. Surrogate time series. PhysicaD:NonlinearPhenomena 2000;142:346–382.
 - Takens, F. Detecting strange attractors in turbulence. In: *Dynamical* systems and turbulence, Warwick 1980. Springer, 1981:366–381.

References V

Demšar, J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine learning research 2006;7:1–30.

< □ > < ---->

A B M A B M

JI SOCO